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Abstract. I obtain exact large-order perturbation corrections to the energy shifts of the 
LoSurdo-Stark effect in hydrogenic atoms for both non-degenerate and degenerate states. 
The method consists of applying perturbation theory to a recurrence relation among 
properly selected moments of the eigenfunction which do not explicitly appear in the 
calculation. The resulting recurrence relation for the perturbation correctiom is suitable 
for computer algebra calculation of perturbation corrections to the energy. The method is 
most useful to treat both separable and non-separable problems i n  any convenient coordin- 
ate system. Here I use spherical polar coordinates and calculate the shifts of the first two 
hydragenic energy levels as illustrative examples. 

1. Introduction 

The LoSurdo-Stark effect in hydrogen was the first problem treated by means of 
quantum mechanical perturbation theory [ 11. Since then, many authors have developed 
improved techniques for obtaining more perturbation corrections. Because the 
Schrodinger equation is separable in parabolic coordinates one can avoid the use of 
perturbation theory for degenerate states. The resulting pair of one-dimensional eigen- 
value equations in such coordinates have been treated in many different ways: straight- 
forward integration of the hierarchy of Rayleigh-Schrodinger perturbation equations 
by means of hypergeometric functions [2], expansions of the solutions in Taylor series 
[3] or series of Laguerre polynomials [4], transformation of the linear eigenvalue 
equations into Riccati equations for the derivatives of the logarithm of the eigenfunc- 
tions [5-9], application of the SO(2, 1) Lie algebra [IO] and the use of hypervirial and 
Hellmann-Feynman theorems [ l l ,  121. When using parabolic coordinates one obtains 
the perturbation corrections to the separation constants and therefore one has to resort 
to the relation between them and the energy to obtain the perturbation corrections to 
the latter. To avoid this indirect procedure one can use spherical polar [13-16] or 
other coordinates [17] in which the Schrodinger equation is not separable. The main 
advantage of such approaches is that one can apply them to actually non-separable 
problems. The logarithmic derivative perturbation theory also applies under such 
conditions [15, IS]. In  addition to it one can also use Lie algebraic methods [19-201, 
large-Z asymptotic expansions [13], polynomial expansions [17] or the celebrated F 
operator formalism [I61 among other techniques. One can also obtain the perturbation 
corrections to the energy from the WKB method [21]. 

0305-4470/92/n20495+07$04.50 0 1992 IOP Publishing Ltd 495 



496 F M Fernbndez 

When one is mainly interested in large-order perturbation corrections to the energy 
a perturbation theory without wavefunction is advisable because it reduces the problem 
to the solution of relatively simple recurrence relations suitable for programming, 
One-dimensional and separable problems are most easily treated by means of the 
hypervirial perturbative method which yields the perturbation corrections as poly- 
nomial functions of the zeroth-order energy [ l l ,  121. In the case of non-separable 
problems one can use the moment method [22,25]. Although in principle this approach 
applies to both non-degenerate and degenerate states no explicit calculation has been 
given for the latter [22-251. 

The purpose of the present paper is to apply the moment method to degenerate 
states and disclose some properties of the formalism that have remained unnoticed. I 
outline the method in section 2 using spherical polar coordinates and derive equations 

that are not mixed by the perturbation are treated simultaneously and large-order 
results are shown for the ground state. In section 4 1 illustrate the application of the 
method to degenerate states obtaining large-order perturbation corrections to the 
splitting of the second hydrogenic energy level. The last section is devoted to further 
comments and conclusions. 

that apply to a!! the states of the LoSurdo-Stark effec! in hydrogen: In section 3 S!BtPS 

2. The method 

The Hamiltonian operator for a hydrogen atom in a uniform static electric field can 
be written in atomic units (corrected to account for the reduced mass of the system) as 

(1) 
: 
r 

H = -;A --+ A~ 

where r=(x2+y2+z2) ' I2  and A is proportional to the strength of the electric field 
which is directed along the z axis. The moment method was presented in a quite 
general way elsewhere [25]; here I specialize in the problem above for the sake of 
concreteness. Furthermore, I arbitrarily choose spherical polar coordinates r, 8, and Q 
so that the perturbation is proportional to z = r cos 8. Straightforward application of 
H to the functions 

Fi,j,n,m =sin' 8 cos' Orn e- 

where p > 0, leads to 

,E ,,,, " ,m - - ? R ~ F  - zv . L,,",m Lv,.. 

i , j , n = O , l ,  . . . ,  m = 0 * 1 ,  . . .  (2) pr i" e 

+ r n i . . + ~ i - ~ i ~  ., .,. ,,,, "-,,m +f[!i+j!!i+j+ !! - ?I!?! + l)jF;,j,n->,m 

Notice that the subscript i remains invariant if i = Iml and that the coefficient of 
fi,,,m-,,m vanishes for n = N - 1 = 0 ,  1 , .  . , if p = 1/N. These choices greatly simplify 
the recurrence relation among the moments 

4.. = (h,j ,","?IW) (4) 

in which @ is an eigenfunction of H with eigenvalue E. I do not make explicit reference 
to m in the moments because this number does not change within the recurrence 
relation. Also notice that the functions c,,,,n,n, as well as the eigenfunctions of H have 
d ~ f i n i ! ~  parity with respect tn the change of 0 by -0. 
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It follows from ((H- E)Ft,j ,m,,, lY)= 0 that the moments (4) obey the recurrence 
relation 

- ~ j ( j - l ) ~ ~ 2 , , - , + A ~ + , , , + ,  = O  
where AE = E + 1 / ( 2 N 2 ) .  Substitution of the expansions 

for E and the moments in ( 5 )  with n replaced by n + 1 enables one to write 

(7) 3 +1' 2J(J - l ) I j !L , - - ,+  ' / ? ( * ) I ~ ~ ~ ) - I j . ! ~ , ? + 2  . 
I = ,  

In order to obtain the perturbation corrections to the energy from this recurrence 
relation one needs an appropriate expression for E in terms of the moments (4). This 
expression which changes from state to state is derived for some particular cases in 
the following sections. 

3. Non-mixing states 

The choice n = N - 1 = Iml and j = 0 leads to AEI0,+, = A I , , N .  Therefore, in terms of 
the new moments A,,,= I, ,+,+,,  i = O ,  1 , .  . , equation (7) becomes 

A;,:)=- (*[( 1 N +  i ) ( N +  i +  1)  - ( j +  N - l ) ( j +  N) ]A) : l ,  
i +  1 

and AEA,,,= AA,,,. Since the normalization of the wavefunction has no effect on the 
energy 1 choose A,,,= 1 which provides both a simple starting point for the recurrence 
relation (8) and a simple expression for the perturbation corrections to the energy: 

Ah' = S,, q =a, 1 , .  . . 1.1 q = 1,2, . . . . (9) E'4) = A(Y-1) 

The calculation of the perturbation corrections to the energy by means of equations 
( E )  and (9) is straightforward. Suffice to say that to obtain E'"''' one needs A;.?' 
9 = 0 , 1 , .  , . , p,  j = 0, 1, . . . , p - 9 + I ,  and i = 0, 1, . . . , 2 (  p - q )  + 1 from previous steps. 
These equations are suitable for both numerical and analytical calculations. In the 
latter case one can use standard computer algebra software and obtain many perturba- 
tion corrections exactly even with a personal computer. 

The first four non-zero perturbation corrections to the energy for arbitrary values 
of N are shown in table 1 thus enlarging the result reported by Alliluev e f  a /  [8]. The 
calculation for particular values of N requires less memory space and can thereby be 
extended to larger orders. For instance, table 2 shows the first nine non-zero perturbation 
corrections to the energy of the ground state ( N  = 1). This strategy for the calculation 
of the perturbation corrections to the energy of states that do  not mix was successfully 
tried before for the Zeeman effect in hydrogen 1251. 
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Table 1. First non-zero perturbation corrections Lo the energy of non-miring states for 
arbi traryvaluesof im!=N-I=0,I  . . . . .  

E'"= N' (-5/8-9N/8-N2/2) 

E"' = N" ( - 5 S j S  - 1215N164-2483 "1128- 1 125N'/128-3N4/2) 

E'&' = N'6(-10625/32-290385N/256-409 117N2/256-615 225N3/512 
- < , A  c,c L,4,>,3,l I n  700 Li5 > I m l  1, &re,-,  
- , L . . , , d , ,  , L Y L * - I I "  l " 7 l Y  I I Y L * - I _ I ' .  , L ,  

E'')= N2'(-lO78 125/32-268318575N/2048-1809 W1955N2/8192 
- 3490 153 569N'/ 16 384 - 530 817 3 15 "14096 - 419 370 Y87N5/8192 
-421 808231N0/32 768-61 889 517N7/32 768- 124N") 

Table 2. First non-zero perturhation corrections to the ground ~ t a . ! ~  energy ( 1  mi = N - 1 = 0). 

E ' P '  P 

2 
4 
6 
8 

10 
12 
14 
16 
18 

-912' 
-3 55512' 

-2 5l2779/2' 
-13 012 777 803/214 

-25497 693 122265/217 
-1389636595717277Y1/22' 

4. Degenerate states 

The most attractive feature of the moment method is that most of its appealing simplicity 
remains when it is applied to degenerate states. Here I consider the splitting of the 
second unperturbed energy level. Of the four degenerate hydrogenic states 2s, 2p, and 

completeness table 3 shows the first nine non-zero perturbation corrections to the 
energy obtained from equations (8) and (9) with N = 2. The first six of them agree 
with those reported by Alliluev el a /  [6]. 

;p*l the lasi i'wo ones have been consi;eie; in the pievious seciion, For the jake of 

Table 3. First non-zero perturbation corrections to the energies of the 2p,, hydrogenic 
states (I??!= N - l  = I ) .  

P E"'' 

2 
4 
6 
8 

12 
14 
16 
I X  

i n  

~ ~~~~ 

-78 
-221 952 

-2 052 091 536 
-32263679117376 

-21126901587Y42217089024 
-7z0020129415i68noo 

-783330762201 061 896077967360 
-35 828082494~21876490094397882368 

~1987499635795 161 I59718505500177858560 
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The states 2s and 2p0 mix when the field is turned on. To calculate the splitting I 
use the recurrence relations ( 5 )  and (7) with m = O  and N = 2 .  When ( j ,  n )  in ( 5 )  is 
substituted for (0,O) and (0, l )  one obtains two equations from which one can eliminate 
the undesired moment lo,-, . The result is 

AE(I0. , -210,0)  = A ( I t . 2 - 2 1 i . i ) .  (10) 

A E I , , ,  = ( 1 1 )  

When j = n = 1 there is another useful relation between A€ and the moments 

An appropriate normalization condition is 
possible expression for the energy: A€ = A12.1. Therefore, 

= 1 because it leads to the simplest 

q = 0, 1, . . . (12) I'd - 6 
1.1- q.0 

and 

q =  1,2, .  . . . (13) E'U'= I(q-1) 
2.2 

Furthermore, (10) reduces to 

12.2(10 ,1-2~0,0)  = 11.2-2. 

When A = 0 all the moments of the unperturbed states in this last equation can be 
expressed in terms of li:: by means of the recurrence relation (7 )  (with m = 0 and 
N = 2). The resulting quadratic equation for this zeroth-order moment has two real roots 

1g=* :  (15) 

because one is dealing with two states at the same time. Equations (12), (15) and the 
recurrence relation (7) determine the remaining zeroth-order moments. As a result one 
can obtain the first-order perturbation correction to the energy without calculating any 
integral form 

(16) 

The calculation of the perturbation corrections of larger order requires an appropri- 
ate expression for I?:. One can obtain it by  expansion of all the moments in (14) in 
A-power series and reduction of Ih:/ and 12: to led by means of the recurrence relation 
(7). Then one can solve the resulting equation for the latter moment and reduce I?: 
to corrections of smaller order using again the recurrence relation (7). The outcome 
of this straightforward procedure is 

E"'= p -  *3, 
2.2 - 

( 1 7 )  

where the i and F signs refer to the two states under consideration and come from 
the values of 1:; obtained above in  (15). Now one can easily obtain all the perturbation 
corrections to the energy by means of equations (12), (13 ) ,  (17) and the recurrence 
relation (7) with N = 2  and m = O .  To obtain one has to calculate I),:) with 
q=O,1,_,. p , j = O , l ,  ..., p - y t 2 ,  and n = l , 2  ,..., Z(p-q )+2  in previous steps. 

I +61:f;')+81'R-I)+ I'q-1)F 1.4 ,:f4-l) 
I .3 
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Table 4. Perturbation corrections 10 the energy Splitting of the hydrogenic states zS and 
2p, ( I m =  h'-2 = 0). 

P E'P' 

I *3 
2 -84 
3 *I 560 
4 -257 856 
5 +I4214816 
6 -2 690 869 248 
7 +243 073 886 976 
8 -48538616082432 
9 *5925429002813952 
IO -1  247119322547093504 
11 *I87912057677787975680 
I2 -41 965 106251 721 294217 216 
13 +7428858655861394409406464 
14 -1770053421993608758 538797056 
IS  +357540210738996369153435500544 
16 -91 188875752496789111151613968384 

Table 4 shows the first 16 perturbation corrections to the energy splitting of the states 
2s and 2p, which agree with a previous calculation [9]. 

5. Further comments and conclusions 

I have shown that the moment method is suitable for the calculation of perturbation 
corrections to the energy and moments of the wavefunction for non-separable simple 
quantum mechanical systems. The technique applies to non-degenerate and degenerate 

corrections are obtained from simple recurrence relations that are suitable for numerical 
as well as algebraic computation, the latter being facilitated by available software. It 
is worth noticing that all the information required to solve the problem is entirely 
contained in the recurrence relation. All the calculations reported here were carried 
out on a personal computer with an 8086 processor and the amount of data presented 
in the tables was limited by the 640 kb of computer memory space and the software used. 

Here I have chosen the Stark effect in hydrogen as an illustrative example and 
benchmark. Because of its separability this problem has been treated by many authors 
and there are enough exact results available in the literature for one to test new 
approaches intensively. To my knowledge, a perturbation calculation of the order 
reported here has never been carried out in polar coordinates on the LoSurdo-Stark 

The moment method has been applied to the Zeeman effect in hydrogen which is 
non-separable [22-251. However, only the unperturbed states that do  not mix have 
been explicitly considered. The present treatment of the LoSurdo-Stark effect suggests 
that the remaining degenerate states of the Zeeman effect may offer no additional 
difficulty. The main difference between both problems is that in the latter !he states of 
the first excited energy level of the hydrogen atom can be treated as if they were 

S!&S 25 we!! and seems !O be n?UCh sizp!er than ather appraeche:. The perkrbatio:: 

eticc! [!5j. 
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non-degenerate because they do not mix. I am currently studying the Zeeman effect 
in hydrogen and will present results elsewhere in a forthcoming paper. 
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